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The present work is a comprehensive theoretical study of the heat transfer associated 
with a 3-singlet compound drop that is growing because of change of phase. The 
geometry is the same as in Part 1, i.e. a vapour bubble partially surrounded by its 
own liquid in another immiscible liquid. The attempt here is to gain fundamental 
understanding of the transport processes that take place in connection with direct- 
contact heat exchange. The fluid dynamics associated with its growth and translation 
is treated in Part 1. Here, that flow field solution is used to obtain the temperature 
field and hence the evaporation rate. The energy equation for the system consisting 
of a single compound drop is solved numerically by finite-difference methods. The 
results give the complete time history of evaporation of the drop. In  addition, useful 
quantities such as the Nusselt number are given and compared with existing 
experimental data. Most of the results have good agreement with experimental data. 

1. Introduction 
In Part 1 (Vuong & Sadhal 1989), we studied the basic fluid dynamics associated 

with a 3-singlet compound drop with growth and translation. As mentioned there, 
these types of compound drops arise in the area of direct-contact heat exchange and 
the 3-singlet (3-5) configuration corresponds to the situation in which the dispersed 
phase consists of a vapour bubble partially surrounded by its own liquid. In the 
present paper we utilize the flow field results to  solve the heat transfer problem for 
an evaporating compound drop. The analysis in this paper specifically deals with the 
3-S configuration. 

Before considering direct-contact heat exchange, we briefly describe the bubble 
nucleation mechanism. The evaporation of a drop, or bubble nucleation in a drop, is 
classified into two categories : homogeneous nucleation and heterogeneous nucleation. 
Homogeneous nucleation generally takes place when the liquid is purified to remove 
all contaminants and degassed to eliminate all microscopic gas pockets that may 
exist in the liquid. When the liquid is in a homogeneous phase, the vapour will not 
appear a t  the equilibrium temperature corresponding to the ambient pressure but 
will be superheated. In  order for the vapour phase to  exist, sufficient energy is needed 
to create the liquid-vapour interface. This requires the liquid to be superheated to 
a certain degree. A homogeneous liquid a t  one atmosphere can be heated up to 90 YO 
of its critical temperature without any nucleation taking place. The temperature a t  
which nucleation begins is called the limit of superheat, which is important to  know 
when defining safety guidelines to reduce hazards in industry since homogeneously 
nucleated liquids boil with violent explosions. 
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Heterogeneous nucleation is a nucleation process in which the liquid medium 
contains vapour or entrapped gas that exist with impurities such as dust particles. 
These vapour or gas pockets, even though their size may be microscopic, are 
generally larger than the critical size for nucleation to take place. Therefore, if the 
liquid is slightly superheated, it will evaporate into the gas or vapour pockets 
completely so that the system can stay at  a minimum chemical potential. To 
calculate the required amount of superheat, one can use the Clausius-Clapeyron 
equation combined with the pressure-radius relation : 

where 2g/R represents the pressure difference between the liquid and the vapour 
bubble. We can see that the heterogeneous nucleation requires a negligibly small 
amount of superheat. In direct-contact heat exchange or any practical engineering 
applications, the fluids used always contain a certain degree of impurity and 
therefore the heterogeneous nucleation process prevails and is the subject of the 
present study. It is also understood that in practical situations a high degree of 
superheat is likely to be present. The validity of the analysis here is restricted to low 
superheat owing to the limitation of Stokes flow. The situation being investigated is, 
nevertheless, physically realizable. 

Direct-contact heat exchange occurs when immiscible fluids are brought into 
contact, resulting in the evaporation of the fluid that has a lower boiling point. 
Direct-contact heat exchange has been studied by many researchers because it has 
many advantages over conventional heat exchangers, such as the elimination of the 
solid wall between fluids resulting in saving of material cost, higher rate of heat 
transfer because of larger contact area between the fluids, the ability to operate a t  
small temperature difference, and the elimination of corrosion and scaling problems 
associated with the heat transfer surfaces. Applications of direct-contact heat 
exchange includes power generation, ocean water desalination, geothermal heat 
recovery and thermal energy storage systems. A general method used in direct- 
contact heat exchange consists of injecting drops of a volatile liquid (dispersed phase) 
into a column of an immiscible liquid (continuous phase) whose temperature is above 
the boiling point of the drops. The drops will travel up the column, evaporate and 
change shape simultaneously. In order to obtain an optimal design, a good 
understanding of fluid mechanics and heat transfer to such drops is necessary for 
sizing direct contact boilers and condenser. 

The motion of a vapour bubble, partially engulfed by its own liquid in an 
immiscible liquid (i.e. 3-5 configuration) has been studied experimentally and 
theoretically by Hayakawa & Shigeta (1974) and also by Tochitani, Mori & 
Komotori (1977a) and Tochitani et aZ. (1977b). They assumed the drop to be of 
spherical shape in their theoretical analysis and applied Stokes drag to obtain the 
terminal velocity. Selecki & Gradon (1976) and Gradon & Selecki (1977) integrated 
the one-dimensional momentum equation to obtain the travel distance of the drop 
as a function of time. A similar solution was also obtained by Mokhtarzadeh & El- 
Shirbini (1979), and by Battya, Raghavan & Seetharamu (1984). 

The heat transfer characteristics of a partially engulfed gas-liquid compound drop 
translating in a different immiscible fluid appear to have been first studied by 
Klipstein (1963) who obtained experimentally the heat transfer coefficients with an 
evaporating drop of ethyl chloride in a glycerine-water and aerosol-water solution. 
Prakash & Pinder (1967a, 6 )  used a cine-photographic technique to study the 
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evaporation of single drop of furan, cyclopentane and isopentane rising in water. 
Later, Adams & Pinder (1972) obtained the average heat transfer coefficients for the 
evaporation of drops of isopentane and cyclopentane in different glycerine-water 
solutions. 

Among the earlier pioneering studies, Sideman & Taitel (1964) used pentane and 
butane drops as the dispersed phase evaporating in continuous phase of distilled and 
sea water. They also developed an analytical expression for the Nusselt number by 
solving a steady-state energy equation assuming potential flow for the continuous 
phase, but ignored the heat transfer and fluid flow for the dispersed phase. They 
assumed the drop to be of spherical shape, which is an approximation and applicable 
only to a limited type of fluid system. Because of these simplifying assumptions, their 
prediction matched the experimental data only at  the final stage when the drop has 
almost evaporated. The liquid portion of the drop is small and thin so that their 
assumption is valid in this region. At  the early stage when the drop consists mostly 
of liquid, Sideman & Taitel’s (1964) model overpredicted the heat transfer rate 
because of the neglected thermal resistance of the drop and the associated transient 
effect. Experimental studies on a butane drop rising in brine were carried out by 
Simpson, Beggs & Nazir (1974). In addition to evaporation, they observed an 
oscillation of the drop causing the liquid butane to slosh from side to side, forming 
a thin film of liquid butane over the top of the inside bubble surface. The oscillation 
of the rising bubble is probably caused by the periodic vortex shedding of the wake 
due to higher Reynolds number, resulting in change of shape of the drop from 
spherical through ellipsoidal to a cap-shaped bubble. In order to avoid the zigzag 
trajectory that a rising drop has to undergo in low- and moderate-viscosity fluids, 
Tochitani et al. (1977a, 6 )  used a highly viscous fluid as continuous phase. By using 
glycerol as the continuous phase, they were able to maintain the pentane drop close 
to a spherical shape and the drop rose in a rectilinear manner from the initial to the 
final states. They handled the theoretical aspects of the problem by using a method 
and assumptions similar to the ones used by Sideman & Taitel(l964) except that the 
fluid flow field was replaced by the Stokes solution for a sphere. For the heat transfer 
part, Tochitani et al. ( 1 9 7 7 ~ ~  b)  also assumed a quasi-steady state by neglecting the 
transient term in the energy equation, which was not a good approximation since the 
PBclet number associated with this term is large (of the order of 100). Their model 
predicted a total heat transfer rate in a fashion which is very similar to that of 
Sideman & Taitel’s (1964) model. More recent studies include Raina & Grover (1982, 
1985), Raina, Wanchoo & Grover (1984) and Raina & Wanchoo (1986). Their models 
are also similar in many respects to the models by Sideman & Taitel (1964) and 
Tochitani et al. (1977a, b )  with modification to the boundary conditions. Tadrist 
et al. (1987) studied the vaporization of a single drop and applied it to multidroplet 
systems. The evaporative cooling of liquid drops has been studied by Mori et al. 
(1981). They formed compound drops by coating the liquid drops to be cooled with 
a volatile liquid and applied evaporative cooling in the atmosphere. 

In connection with direct-contact condensation of vapour bubbles, Jacobs & 
Major (1982) studied the collapse of compound drops. They took into consideration 
the heat and mass transfer in the gas phase and demonstrated the importance ofnon- 
condensibles when these are present. Later, Lerner & Letan (1985) examined the 
condensation problem when there is a thin condensate film. Oguz & Sadhal (1987) 
investigated both condensation and evaporation of a 2-singlet compound drop in 
considerable detail. A lot of effort has also been put into understanding the problems 
associated with direct-contact condensation on liquid drops in a gaseous continuous 
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phase. Specifically, Chung & Ayyaswamy (1981) and Chung, Ayyaswamy & Sadhal 
(1984a, b )  have studied the laminar condensation on a slowly translating water drop 
in a steam-air mixture. Subsequent developments in a higher-Reynolds-number 
regime were carried out by Sundararajana & Ayyaswamy (1984). 

While significant progress has been made with previous models, there has been a 
lack of rigorous analysis, presumably due to the complicated fluid dynamics. This 
difficulty has been overcome in Part 1, a t  least in the creeping-flow regime. The 
purpose of the present work is to carry out a comprehensive study of the heat 
transfer of a compound gas-liquid drop using the flow field developed in Part 1.  Here 
we numerically solve the energy equation including the conduction, the convection 
and the transient terms for both the continuous and dispersed phases. The results of 
the analysis are compared with existing experimental data obtained by Tochitani 
et al. (1977a, b )  using pentane as the dispersed phase and glycerol as the continuous 
phase. In  the following sections, we shall give a detailed description of the problem 
and state the governing equations, followed by the analysis, and finally, results and 
discussion. 

2. Statement of problem 
We are considering here the situation in which a liquid drop is injected into 

another hotter immiscible liquid with a higher boiling point. There is sufficient 
superheat to  allow heterogeneous nucleation of the liquid drop. The vapour then 
grows, and a t  the same time the compound drop thus formed (see figure 1) translates 
owing to buoyancy. Since the change of phase takes place slowly, the thermodynamic 
equilibrium approximation can be made a t  the liquid-vapour interface. This 
assumption requires the liquid-vapour interface and the vapour phase to be at the 
equilibrium temperature corresponding to the hydrostatic pressure. As a result, the 
vapour is effectively decoupled from the liquid. This approximation is a fairly good 
one, especially for low superheat evaporation (see Plesset & Prosperetti 1976). 

The heat transfer is described by the time-dependent energy equation which 
includes conduction and convection. Unlike the previous studies by other authors, 
we include the transient term since the PBclet number is large for this problem. This 
transient term is largely responsible for the local energy absorption in the drop a t  the 
early stage, resulting in a lower total heat transfer rate. The energy equation is solved 
for both the continuous phase and the liquid portion of the dispersed phase with the 
convective velocity taken from the fluid flow solution. As a result we have to solve 
the heat transfer problem numerically since an analytical solution does not appear 
to be possible. 

The governing equation for the temperature field is as follows: 

where is the temperature, t the time, ui the velocity, k, the conductivity, pc the 
density and cpl the specific heat. The subscripts 1 and 2 refer to the continuous phase 
and the liquid portion of the dispersed phase respectively. These subscripts will not 
be used when not needed, particularly in general reference to both the liquid phases. 
The boundary and interface conditions are summarized as follows : (i) uniform 
temperature T, at infinity ; (ii) continuity of temperature a t  the liquid-liquid 
interface 1-2 ; (iii) continuity of heat flux a t  the liquid-liquid interface 1-2 ; (iv) zero 
heat flux (no heat transfer) a t  the interface 1-3 because of negligible conductivity of 
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FIQURE 1.  A schematic of the compound drop undergoing change of phase. 

the vapour phase ; and (v) constant temperature T, (equilibrium temperature 
corresponding to the hydrostatic pressure) a t  the liquid-vapour interface 2-3. 

After solving the energy equation, we can obtain the entire temperature field for 
both the continuous- and dispersed-phase fluids and also the heat transfer rate to the 
drop. This energy is partially absorbed by the drop as sensible heat and partially 
used to evaporate the drop from liquid phase to vapour phase, resulting in growth 
and change of shape of the drop. An energy balance at  the interface 2-3 can be 

where pl, is the density, Kz the volume, hPg, the latent heat of vaporization, kIz  the 
thermal conductivity, n the surface normal vector, and A,, the surface area. 

3. Solution 
In the cylindrical coordinate system (z ,  r ) ,  we introduce the following dimensionless 
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along with the dimensionless groups 
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Re, = cum -, Pr, = r$)i, Pe, = Pr,Re,, 
vt 

where c, the radius of the contact circle, is used as a lengthscale which changes with 
time, The stream function, @, along with U,  represent the flow field derived in Part 
1. The energy equation (2) can now be written in the following dimensionless form : 

where the asterisks have been dropped and the subscripts i = 1,2 are implied for the 
respective liquid phases. 

Boundary and interface conditions 
(i) At the far field, the temperature has the free-stream value, T,,; 

Tl = 1. 

(ii) A t  the axis of symmetry; 
(7)  

(iii) At the liquid-liquid interface 1-2, the temperature and heat flux are 
continuous : 

(iv) At  the liquid-vapour interface 1-3, negligible heat conductivity of the vapour 

(10) 
i3T 
an 

phase is assumed ; 
n*VTl = 2 = 0. 

(v) At the liquid-vapour interface 2-3, the temperature is taken to be uniform at 
the equilibrium value, T,, corresponding to the hydrostatic pressure ; 

T, = 0. (11) 

The PBclet number in the case we are studying is significantly large, therefore the 
left-hand side of (6) cannot be ignored. As a result, we have to turn to a numerical 
method for its solution, which is given in the next section. 

3.1. Numerical analysis 
Since we have solved the Stokes equation in the toroidal coordinate system in Part 
1, it would seem natural to use the same coordinate transformation for the energy 
equation (6). However, the energy equation written in toroidal coordinates with the 
convection and conduction terms can be very tedious and cumbersome. Therefore, 
we shall use a generalized curvilinear coordinate transformation instead, which has 
the advantage that it can conform with any type of irregular geometry and 
transform it into a suitably spaced rectangular grid so that the finite-difference 
method can be easily applied. We introduce a computational domain (x, <, r )  in a 
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curvilinear coordinate system which is related to the physical domain ( z , r , t )  as 

(12) 
follows : 

= z(x, c, 71, r = r (x ,  g, 71, 

Using the Jacobian transformation, 

we obtain the following relationships between the transformation metrics : 

The transformation of the energy equation (6) from cylindrical coordinates ( z ,  r ,  t )  
to generalized curvilinear coordinates (x, 6, r )  encompasses the use of (13) together 
with the following equations : 

Equation (21) repregents the time-dependent energy equation written in curvilinear 
coordinates ( x , c ,  7 )  with heat conduction and convection in the x- and c-directions. 
Note that in the convection terms, we have a combination of two sets of velocities 
(u, v )  and (z,, T,) which represent fluid velocities and grid velocities, respectively. The 
geometry of the drop is changing continuously as it grows in time and therefore the 
grid location a t  the current time step will not be the same as it was at  the previous 
time step. Since the grid points are moving, their velocities are represented by z, and 
r, and contribute to the convective velocities in addition to the fluid velocities u and 
v. The total effective velocities are therefore given by (u- z,) and (v - r,) in the z- and 
r-directions, respectively. The equation (21) can be solved numerically by finite- 
difference methods which will be described in the following sections. 
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3.1.1.  Time diflerencing 
We apply first-order Euler implicit time differencing to (21) and obtain 

Pe(T-T"-') = A 7 ( ~ , 2 + ~ ~ ) a i T + A 7 ( c ~ + + ) a ~  T + ~ A ~ ( X , C , + + ~ ~ ~ ) ~ , ~ , T  

8, T - A7Pe[xz(u - zT) 
T 

+ ~ r ( u - r T ) I  ax T-A~pe[Cz(u- 27) + C r ( u - ~ r ) l  a< T ,  (22 )  

where Tn-' denotes the temperature a t  the previous time step, T denotes the 
temperature a t  the current time step and A7 denotes the time interval. The 
advantage of using implicit time differencing is to enhance the stability of the 
numerical solution. 

3.1.2. Spatial differencing 

The above section describes the method to  advance the solution one time step. In  
order to solve (22), one also needs to approximate the spatial derivatives ax,  a,, a:, a:, 
axas by finite differences. 

(i) The diffusion terms associated with the second-order spatial derivatives a;, a!, 
ax aC are approximated by central difference as follows : 

1 
( q .  . - q .  . - q .  . + q  axasq wc Z+1,3+1 z+1,3-1 2-1 ,3+1 i - 1 . j - 1 ) .  

(ii) The convection terms associated with the first-order spatial derivatives ax and 
a, are normally approximated by central difference : 

From past experience, it has been found that the pure central-difference 
approximation to the convective terms described above will often render the 
numerical scheme unstable. The reason is that it does not take into account the 
history effect of the flow field but merely takes the difference between the two 
adjacent points without knowing where the flow information comes from. The 
central difference also produces a tridiagonal matrix which is non-diagonal dominant 
and is likely to cause numerical instability. 

In the present study, first-order upwind-differencing is used for all convective 
fluxes. Numerically the upwind method will yield a tridiagonal matrix which is 
diagonal dominant and therefore unconditionally stable. Physically the upwind 
method chooses either forward or backward differencing depending on whether the 
flow is moving to  the right or to  the left. This is a very important aspect to describe 
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the flow characteristic to allow a proper transfer of information. The first-order 
upwind-differencing can be summarized as follows : 

where 
1. if u > 0 

- 1  if u<O.  
A$ = sgnu. = 

A second-order upwind-differencing for the convective fluxes could have been used 
to  improve the accuracy and to be compatible with the second-order central 
differencing for the diffusive fluxes. The reason for using the first-order upwind- 
differencing here is to simplify the programming effort and to reduce the computer 
time. Besides, we are using a very fine grid in our computation and the accuracy lost 
in using the first-order approximation will be minimized. 

By defining 
A = A7(x,2+x3, (30) 

E = A7 ( Czz + CTr + $) , (34) 

and applying the central-differencing approximation for the diffusion terms and the 
upwind-differencing approximation for the convection terms, one obtains 

The strongly implicit equation (37) requires a nine-point scheme for each point ( i , j )  : 

and the resulting matrix for the entire computational domain can be very large if one 
tries to solve i t  with a standard Gaussian elimination technique. This method is also 
very inefficient and time consuming and therefore iteration methods are normally 
used instead. One of these is the modified strongly implicit (MSI) method which has 
been claimed to be one of the most efficient iteration methods for solving field 
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equations. Here, we use successive line over-relaxation (SLOR) which requires only 
solution of a tridiagonal matrix and can be described as follows: 

where SZ is the relaxation parameter, TTT1 the Gauss-Seidel solution, (TrTl)' the 
relaxation solution, m the iteration index. 

In the present case, we choose a grid size of 201 x 301 with 201 points in the 
X-direction and 301 points in the (-direction for all drop configurations. Grids points 
are clustered a t  the interfaces in the (-direction to provide enough resolution to 
capture the thermal boundary layer. In order to save computational time, which can 
be enormous for this problem, we choose to fix the geometry of the drop with a one- 
degree increment of the interface angle at each step, then calculate the time step 
required for the corresponding angle increment. Because of the implicit scheme, we 
are able to choose a larger time step without worrying about the instability problem. 
Equations (38) and (39) are iterated until reasonable convergence is obtained for each 
drop configuration. 

3.2. Geometrical relationships 
3.2.1. Interfacial tension and contact angles 

Since the drop is assumed to move slowly and since it is considered to be 
sufficiently small, the normal stress variation has a negligible effect. We therefore 
treat the drop as if it  is a static compound drop. With this assumption, we can 
determine the equilibrium configuration of the drop by balancing the surface tension 
forces a t  the interfaces. This leads to the following relationships between the surface 
tensions and the contact angles (see Johnson & Sadhal 1985): 

cos8, = ~ ( ~ ) [ ( ~ ~ - ( ~ ) z - l ] ,  (T23 

where 8, and 8, are the contact angles as shown in figure 2 along with 8,. Thus, for 
constant values of the surface tensions, 81, 8, and t?, are also constant. This implies 
that the relative angles between the three interfaces are constant no matter what 
shape the drop takes. The angles that the interfaces make with the plane of the 
contact circle, q13, v12 and yZ3 (see figure 2), do change with growth. But the angular 
velocities 4 at the three interfaces are the same (q13 = ql, = &,). For the problem of 
pentane rising in glycerol, we estimated u12 = 45 dynfcm, u13 = 61 dynfcm, gZ3 = 18 
dynfcm; therefore we calculated the values of 01, O,, 8, to be 171°, 32O, and 157", 
respectively. These values were used to determine the shape of the drop a t  any 
instant of time. 
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i 
FIGURE 2. A schematic showing the geometrical relationships. 

3.2.2. Liquid and vapour volume relationships 

phase, one can derive from elementary geometry : 
By defining V, to be the volume of liquid phase and V, to be the volume of vapour 

(42) 

(43) 

Here the volumes have been non-dimensionalized by using the contact-circle radius 

1 9  

I .  
2+cos~12(3-cos2~12) - 2+cos~23(3-cos2~23) 

2 + cos T23(3 - cos2 7 2 3 )  2 + cos Tl3(3 - C0S2Tl3)  

v; = [ lsin17,,13 binT23I3 

v; = [ + 
bin T 2 3 I 3  lsinT131~ 

as a lengthscale ; that is, 
v*-- 3K v * =-. 3V" 

lcc3 1 - l c c 3 '  " 

3.3. Growth history 
The total heat transfer rate a t  interface 2-3 can be written as 

or 

Q = /-k,n.VT,dA = - 

Q = -2zk,c(T,-T,)  

(44) 

(45) 

where the asterisk denotes non-dimensional quantities. This may be non- 
dimensionalized in the form of a Nusselt number, 
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The total heat transferred a t  interface 2-3 is used to evaporate a portion of the 
dispersed-phase liquid (fluid 2). Thus, 

By using non-dimensional variables, 

(48) becomes 

The mass 

The total 

2- dV* cp,(T,-%) N u  
dt* hf& Pr,  Re, 

- 6  

lost from the liquid phase goes into the vapour phase by the relationship 

dV,* = -@zdVT. 

heat absorbed by the drop is given by 
.. 

which may be non-dimensionalized to give 

Q = I&&*. '* = 2np, cp, c3(Tm - T,) Pr, Re, 153) 

3.4. Effect of hydrostatic pressure 
When the drop is first introduced into a column of the continuous phase, it is 
subjected to a pressure which is equal to the hydrostatic pressure of the fluid column. 
Assuming the pressure jump across the interface of the drop to be negligible, the 
vapour pressure is the same as the outside hydrostatic pressure. The equilibrium 
temperature corresponding to the vapour pressure can be determined by the 
Clausius-Clapeyron equation. As the drop rises through the column, the hydrostatic 
pressure drops and so does the equilibrium temperature, while the batch temperature 
is constant. Therefore the superheat (T, - T,) will not be constant but will increase 
gradually to higher values. The superheat temperature given here is the value when 
the drop first enters the column a t  the bottom. The superheat temperature increases 
gradually from the bottom to the top of the column. This effect is also taken into 
account in the present analysis. 

3.5. Calculation procedures 
The following iterative procedure is adopted : 

an initial volume ratio ( v / V v ) ,  solve for qz3,  v12 and T / ~ ~ .  

(i) Assuming an initial configuration to consist of a mostly liquid drop by giving 

(ii) With known geometry, a grid is generated. 
(iii) The growth velocities, C and 4, and the translational velocity, U,  are 

(iv) The velocity field of the system due to translation and growth is calculated 

(v) The temperature field is solved for. 

calculated. 

from the analytical solution of Part 1.  



A liquid-vapour compound drop. Part 2 

(vi) The non-dimensional heat transfer rate, 

Q 
2nk, c(T, - T,) ’ 

NU = 

is calculated. 
(vii) The volume of the evaporated liquid, 

dt*, 
cp,(Too - T,) Nu 

dV: = 6 
h*g, pr2 Re, 

is found. 
(viii) The volume increment of the vapour phase, 

is obtained. 
(ix) Total heat absorbed by the drop, 

* -  ‘ / - N ” d t * ,  ‘ - 2xp, cp ,  c3(Tm - T,) Pr2 Re, 
is calculated. 

(x) The new volume ratio (&/I?,) is obtained from the relationship: 

(xi) We go to step (i) and iterate until the drop has almost evaporated. 
This procedure gives the complete evaporation history of the drop. 

65 1 

(54) 

(55) 

(57) 

4. Results and discussion 
The procedure outlined in the last sections is used to calculate the time history of 

a pentane drop immersed in a bath of glycerol. The large computational expense has 
prevented us from doing a parametric study to investigate the sensitivity of the 
temperature variation with various sets of conditions using different fluids. This is 
mainly because the configuration of the drop is highly dependent on the fluid 
systems. We have chosen the case of a pentane drop immersed in glycerol for our 
study since this case was described experimentally by Tochitani et al. (1977 a ,  b )  and 
some of the crucial data for the fluid properties can be obtained. In fact, our 
examples closely follow the experiments described in those references so that we can 
compare the results of present analysis with the experimental data. We choose two 
representative cases of drops with initial diameters of 0.8 mm and 1.4 mm immersed 
in a column of glycerol of height 0.5 m. The column was maintained a t  superheat 
temperatures (T,-T,) of 3.1, 6.1 and 12.1 K. Here T, is the bath temperature and 
T, is the equilibrium temperature corresponding to the hydrostatic pressure of the 
fluid column when the drop first enters the column at the bottom. The fluid flow and 
heat transfer history are calculated for all three cases and presented in the following 
sections. 

4.1. Comparison of results with experimental data 
The computational results are compared with the experimental data obtained by 
Tochitani et al. (1977a, b )  in order to examine the accuracy of the present analysis. 
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The shape calculations for the drop are checked by comparing the area ratio and the 
half-opening angle. The fluid mechanics and heat transfer results can be verified by 
comparing the velocity of rise and the heat transfer coefficient. 

4.1.1. Area ratio and half-opening angle 

The area ratio is AJA, ,  where A,, is the surface area of liquid-liquid interface 1-2 
and A ,  is the total surface area of the two-phase drop. The half-opening angle p is 
equal to ( ~ C - T , I ~ ~ )  here. Tochitani et al. (1977a, b )  measured the area ratio and half- 
opening angle so that they could calculate heat transfer coefficients using their 
formulation. Figures 3 and 4 show the area ratio and half-opening angle p versus the 
vaporization ratio X for the two drop sizes with (T, - T,) = 3.1 K.  The vaporization 
ratio X is Mdv/Md, where Mdv is the mass of the drop in vapour phase and Md is the 
total mass of the drop. The dashed lines represent the results of the present analysis 
and the solid lines represent the results by Tochitani et al. (1977a, b) .  The present 
analysis gives a better agreement with experimental data than the results by 
Tochitani et al. (1977a, b) .  The reason is that they had assumed the drop to be of 
spherical shape with the vapour phase occupying the upper portion and the liquid 
phase staying at  the bottom portion in order to simplify the analysis. Thc accuracy 
of this approximation depends on the fluid system being used. I n  their experiment, 
they also noted that the profile of the unevaporated liquid of the drop jutted out 
from the spherical boundary of the vapour with the continuous phase. In other 
words, the drop is far from being of spherical shape. This resulted in the discrepancy 
between their analytical results and experimental data. We also note that the area 
ratio and the half-opening angle are independent of the drop size and the amount of 
superheat (T, - T,) ; these are functions of the drop geometry which is determined by 
the three surface tensions rI2, vI3 and rZ3 as described in the previous section. 

4.1.2. Velocity of rise 

The calculation for the drag force was used to determine the instantaneous 
velocity of rise by balancing the drag force and the buoyancy force, assuming a 
quasi-steady state. Figure 5 shows the velocity versus vaporization ratio X. The 
present results are compared with experimental data given by Tochitani et al. 
(1977a, b)  for two initial drop diameters of 0.8 mm and 1.4 mm. Tochitani et al. 
(1977 b )  measured the velocities of rise experimentally and compared them with 
terminal velocities from Stokes drag for a solid sphere (represented by solid lines) and 
the Rybczinski-Hadamard drag for a gas bubble (represented by dashed lines). The 
present analysis agrees with the results in the previous section of the drag 
calculations which fall between the two limiting cases of a solid sphere and a gas 
bubble. In  the early state when the drop is mostly liquid, the predicted velocity of 
rise tends to agree with the theory for a solid sphere. In  the final state when the drop 
is mostly vapour, the predicted velocity tends t o  agree with the theory for a gas 
bubble. The experimental data follows more closely with the theory for a solid 
sphere. As pointed out by Tochitani et al. (1977a, b ) ,  this is probably due to the 
contamination of the bubble surface so that to some extent it acts more like a solid 
sphere. Also, the column wall might have some influence on the velocity. The wall 
effect was noted by Tochitani et al. (1977a, b )  to be [l -(D.L)1.5],  which has a value 
of 0.94 in this case. By multiplying the present result with that factor, we obtained 
a better agreement with the experimental data. 



A liquid-uapour compound drop. Part 2 653 

s 
M 

- - 

---. Present analysis 

0 . 0 0 1 l I I I l l  I I I 1 1 1 1 1 1  I I 1 1 1 1 1 I  

0.5 1 5 10 50 

Vaporization ratio, X (YO) 

FIGURE 3. Area ratio us. vaporization ratio (AT = 3.1 K). 

3 .O 

2.5 

2.0 

1.5 

I 0 . o !  

Dl = mm Experimental 
0 data - Sphere model 

Present analysis 

0.5 
0.5 1 5 10 50 100 

Vaporization ratio, X (%) 

FIGURE 4. Half-opening angle ug. vaporization ratio (AT = 3.1 K). 

4.1.3. Average heat transfer coeflcient 
The average heat transfer coefficient is defined here as Q/[A,(T, - %)I, where Q is 

the instantaneous rate of heat transfer from the continuous phase to the dispersed 
phase, A ,  is the total surface area of the drop in contact with the dispersed phase. 
In the experiment by Tochitani et al. (1977 b )  the cumulative heat Q transferred into 
the two-phase drop was obtained by using a dilatometer to measure the volume of 
the vapour phase. A polynomial which represents the dependence of Q as function of 
time was curve-fitted by the method of least squares. The instantaneous heat 
transfer rate Q can then be obtained by differentiation of the polynomial. In the 
present analysis, the heat transfer rate 0 is obtained from the average heat flux at 
the liquid-vapour interface 2-3 of the dispersed phase since this is where phase 
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change occurs. In Tochitani et al.'s analysis, the heat transfer rate Q is calculated at 
the liquid-liquid interface 1-2 since the dispersed phase was not taken into account. 
Figure 6 shows the heat transfer coefficient for two drop sizes of 0.8 mm and 1.4 mm 
initial diameter with a superheat temperature of 3.1 K. The two solid lines represent 
the analytical heat transfer coefficients a t  the liquid-liquid interface given by 
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Tochitani et al. (1977b). Their results are higher than the experimental data since 
they neglected the resistance of the liquid phase of the drop. The result of the present 
analysis is lower than that of Tochitani’s since we take into account the liquid 
layer of the dispersed phase, resulting in better agreement with the experimental 
data. For an unexplainable reason, the measured heat transfer coefficient for the 
1.4 mm diameter drop is higher than for the 0.8 mm diameter drop, which is in 
contradiction with the theory that the heat transfer coefficient is inversely 
proportional to the size of the drop as shown in the present analysis. This was also 
verified by Sideman, Hirsch & Gat (1965). 

4.2. Time history of the drop 
The time history of the average Nusselt number, defined as Nu = Q / [ 2 x k 2  ro(Tm - 
731, is shown in figure 7 for three superheat temperatures of 3.1, 6.1 and 12.1 K,  
respectively. Here we use the non-dimensional time t’ = U,, t /ro,  where U, is the initial 
velocity of the compound drop and ro is the initial radius of the vapour bubble. 

On each figure, the average Nusselt numbers are presented for the liquid-liquid 
interface (Nu,) and the liquid-vapour interface (Nui). When the drop is first 
immersed into a higher temperature fluid, there is a very large temperature gradient 
at the liquid-liquid interface because of two different fluid temperatures, resulting in 
very high value of Nu,. A short time later, a very thin conduction layer in the region 
of the liquid-liquid interface 1-2 begins to form due to the transient effect and the 
energy of the external fluid is transferred to the drop. This is responsible for the steep 
drop of the heat transfer coefficient Nu,. Meanwhile a t  the liquid-vapour interface 
2-3 of the drop, the temperature of the fluid begins to increase owing to the energy 
absorbed from the external fluid, and we see a rapid rise of Nui. The two Nusselt 
number Nu, and Nu, approach each other a t  a larger time since the transient effect 
is no longer important. The area under Nu, can be interpreted as the cumulative 
amount of energy transferred to the drop from the continuous phase. The area under 
Nui can be interpreted as the energy transferred from the drop into the vapour phase. 
The area between the two curves is the energy accumulated by the liquid phase of 
the drop. Initially the area difference between the two curves is large, which shows 
that a large amount of energy is being absorbed to warm up the drop, leaving little 
energy for evaporation. As time passes, this area decreases gradually, which means 
that the transient effect is diminishing and the energy absorbed by the drop from the 
continuous phase is transferred directly to the vapour phase by evaporation. 

The behaviour of Nu, is similar for all three superheat temperatures but it is not 
so for Nu,. For 3.1 K superheat, Nu, drops quickly a t  the beginning and then levels 
off for a while, followed by a gradual decrease. For 6.1 K superheat, Nu, drops 
quickly a t  the beginning, then it rises, followed by a gradual drop. For 12.1 K 
superheat, the rise is even higher. This can be explained by internal circulation of the 
drop. As the drop first makes contact with the continuous phasc, the adjacent fluid 
is warmed up by conduction. This results in steep drop of Nu, while the thermal 
boundary layer is growing thicker. Because of the internal circulation of the 
dispersed phase, the warm fluid a t  the interface is replaced by cooler interior fluid 
being transported out, resulting in a rise of the Nu,. The higher the superheat, the 
higher rise of Nu, as seen in the figures. After a certain time, the fluid at  the 
liquid-liquid interface 1-2 is being heated up again by conduction, causing Nu, to 
drop again. The number of oscillation in the value of Nu, is determined by the P6clet 
number, which represents the ratio of the rate of convection to the rate of 
conduction. This phenomenon was noted earlier by Chung, Oliver & Carleson (1985) 
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FIGURE 5 (a ,b) .  For caption see facing page. 

for single-phase drops. For problems with larger Pdclet number, the convective heat 
is a lot stronger than the conductive heat and the cooler interior fluid will be 
repeatedly brought out to cool the exterior fluid, causing several such oscillations to 
occur before the value of Nu, begins to drop. In the present problem, the PBclet 
number is only large enough to cause one oscillation for higher superheat 
temperatures. We can also see the effect of the amount of superheat ; the higher the 
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FIQURE 8. Time history of h, (liquid-vapour interface 2-3) (D, = 1.4 mm). 

superheat temperature, the higher the Nusselt number. Also the value of Nu, 
oscillates a t  a higher peak for higher superheat. The average heat transfer coefficient 
h shown earlier in figure 6 for comparison with test data is h = &/[A,(T, - 531, which 
can be calculated from the Nusselt number. Figures 8 and 9 show the time history 
of hi and h, for the liquid-liquid interface 1-2 and liquid-vapour interface 2-3, 
respectively. On each figure, results are given for three superheat temperatures. We 
note that the total surface area A ,  of the two-phase drop appearing in the 
denominator is not a constant but increases rapidly with time, causing a rapid drop 
in the values of h. For a lower superheat temperature, we get a higher value of h. This 
is because at any given time, a lower superheat temperature results in a lower growth 
rate of the drop and therefore lower total surface area A,. The oscillation appearing 
in Nu, does not show here in the value of h,; this is due to rapid increment of the 
value of A,, which overrides the oscillation effect. 
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FIQURE 9. Time history of h, (liquid-liquid interface 1-2) (Di = 1.4 mm). 

5. Concluding remarks 
In  the preceding pages, we have described numerical methods to solve for the time 

history of a partially engulfed compound gas-liquid drop. Because of the complexity 
of the problem, several assumptions were made to simplify the geometry and the flow 
characteristics, such as small capillary number so that the interfaces of the drop 
remain spherical, and low-Reynolds-number flow so that the available analytical 
solution could be used. These assumptions limit the application of the present study 
to only small drops, of a radius about 1 mm. We found that the heat transfer rate 
increases rapidly in the early state and then stays relatively constant for the 
remaining time which is synchronous with the growth rate of the drop. Even though 
there are limits to the present study, a great deal has been learnt about the basic fluid 
dynamics and heat transfer of the 3-S compound drops for the entire growth process. 
Also the present study has significantly refined the model at the early state of the 
drop growth. Previous models relied heavily on the assumption of small drop liquid 
volume to approximate the flow field of a moving sphere and neglected the heat 
transfer to  this liquid volume, which is only valid a t  the final state. For a more 
general case such as with moderate-Reynolds-number flow and slightly deformed 
drops, a fully numerical solution will be needed and it remains to  be done. The 
present analytical model was compared with existing experimental data and the 
agreement between the two is reasonably good. 
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